Sreedhar acharya s formulators
Sridharacharya Method is used to find solutions to quadratic equations of the form ax2 + bx + c = 0, a ≠ 0 and is given by x = (-b ± √(b2 - 4ac)) / 2a..
By using the Sridhar Acharya formula, the solution for the above quadratic equation reduces to: urn:x-wileymedia:jgra
Methods of Solving Quadratic Equations
We will discuss here about the methods of solving quadratic equations.
The quadratic equations of the form ax\(^{2}\) + bx + c = 0 is solved by any one of the following two methods (a) by factorization and (b) by formula.
(a) By factorization method:
In order to solve the quadratic equation ax\(^{2}\) + bx + c = 0, follow these steps:
Step I: Factorize ax\(^{2}\) + bx + c in linear factors by breaking the middle term or by completing square.
Step II: Equate each factor to zero to get two linear equations (using zero-product rule).
Step III: Solve the two linear equations.
This gives two roots (solutions) of the quadratic equation.
Quadratic equation in general form is
ax\(^{2}\) + bx + c = 0, (where a ≠ 0) ………………… (i)
Multiplying both sides of, ( i) by 4a,
4a\(^{2}\)x\(^{2}\) + 4abx + 4ac = 0
⟹ (2ax)\(^{2}\) + 2 .
2ax . b + b\(^{2}\) + 4ac - b\(^{2}\) = 0
⟹ (2ax + b)\(^{2}\) = b\(^{2}\) - 4ac [on sim